Function concave up and down calculator - Use the Concavity Theorem to determine where the given function is concave up and where it is concave down. Also find all inflection points. f(x) = x 2 - 20x + 109. Concavity Theorem: Suppose that f ''(x) exists on an interval. (a) y = f(x) is concave up on the same interval that f ''(x)>0.

 
A function is graphed. The x-axis is unnumbered. The graph is a curve. The curve starts on the positive y-axis, moves upward concave up and ends in quadrant 1. An area between the curve and the axes in quadrant 1 is shaded. The shaded area is divided into 4 rectangles of equal width that touch the curve at the top left corners.. Burston prime warframe

Constructing the graph of an antiderivative. Preview Activity 5.1 demonstrates that when we can find the exact area under a given graph on any given interval, it is possible to construct an accurate graph of the given function's antiderivative: that is, we can find a representation of a function whose derivative is the given one.A point of inflection is where f(x) changes shape. Once the points of inflection has been found, use values near those points and evaluate the second derivative using those x values. If the second derivative is positive, then f(x) is concave up. If second derivative is negative, then f(x) is concave down.Free online graphing calculator - graph functions, conics, and inequalities interactivelyConcave up: (-∞, 0) U (3/2,∞) Concave down: (0,3/2) Find the second derivative: f'(x)=4x^3-9x^2 f''(x)=12x^2-18x Set f''(x) equal to 0 and solve for x and determine for which values of x f''(x) doesn't exist: 12x^2-18x=0 f''(x) exists for all values of x; a polynomial is always continuous. Simplify and solve for x: 6x(2x-3)=0 x=0, x=3/2 The domain of f(x) is (-∞,∞). Let's split up the ...A graph is concave up where its second derivative is positive and concave down where its second derivative is negative. Thus, the concavity changes where the second derivative is zero or undefined. Such a point is called a point of inflection. The procedure for finding a point of inflection is similar to the one for finding local extreme …Find the Concavity xe^x. xex. Write xex as a function. f(x) = xex. Find the x values where the second derivative is equal to 0. Tap for more steps... x = - 2. The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.This question asks us to examine the concavity of the function . We will need to find the second derivative in order to determine where the function is concave upward and downward. Whenever its second derivative is positive, a function is concave upward. Let us begin by finding the first derivative of f(x). We will need to use the Product Rule.We can calculate the second derivative to determine the concavity of the function's curve at any point. Calculate the second derivative. Substitute the value of x. If f " (x) > 0, the graph is concave upward at that value of x. If f " (x) = 0, the graph may have a point of inflection at that value of x. How do you find concave upwards and ...Find step-by-step Biology solutions and your answer to the following textbook question: Determine where each function is increasing, decreasing, concave up, and concave down. With the help of a graphing calculator, sketch the graph of each function and label the intervals where it is increasing, decreasing, concave up, and concave down. Make sure that your graphs and your calculations agree ...0:00 find the interval that f is increasing or decreasing4:56 find the local minimum and local maximum of f7:37 concavities and points of inflectioncalculus ...We know that a function f is concave up where f " > 0 and concave down where f " < 0. This is easy to implement on the TI-89. For instance, is y = x 3 - 3x + 5 concave up or down at x = 3? Type "d(x 3 - 3x + 5, x, 2)|x=3" (You can get the derivative function from the menu, or press ) and press .If the result is positive, the answer is "concave up", and if the answer is negative, the answer is ...Constructing the graph of an antiderivative. Preview Activity 5.1 demonstrates that when we can find the exact area under a given graph on any given interval, it is possible to construct an accurate graph of the given function's antiderivative: that is, we can find a representation of a function whose derivative is the given one.Concave means "hollowed out or rounded inward" and is easily remembered because these surfaces "cave" in. The opposite is convex meaning "curved or rounded outward.". Both words have been around for centuries but are often mixed up. Advice in mirror may be closer than it appears.Positive Positive Increasing Concave up Positive Negative Increasing Concave down Negative Positive Decreasing Concave up Negative Negative Decreasing Concave down Table 4.6What Derivatives Tell Us about Graphs Figure 4.37 Consider a twice-differentiable function f over an open intervalI.Iff′(x)>0for allx∈I, the function is increasing overI.Free Pre-Algebra, Algebra, Trigonometry, Calculus, Geometry, Statistics and Chemistry calculators step-by-stepSo, for example, let f ( x) = x 4 − 4 x 3 and follow the steps to see where the function is concave up or concave down: Step 1: Find the second derivative. f ′ ( x) = 4 x 3 − 12 x 2. f ...我们这里采取一种比较容易理解的方式来定义。. 1,我们说函数是凹的(concave up),是指函数的切线位于函数的下方。. 从图形上看,函数的切线的斜率是增加的,也就是说 f ′ (x) 增加。. 由上一节我们知道,函数增加的判断条件是它的导数为正,所以函数是凹 ...Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more.Free Functions Concavity Calculator - find function concavity intervlas step-by-stepCalculus. Find the Concavity f (x)=x^3-12x+3. f (x) = x3 − 12x + 3 f ( x) = x 3 - 12 x + 3. Find the x x values where the second derivative is equal to 0 0. Tap for more steps... x = 0 x = 0. The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the ...It implies that function varies from concave up to concave down or vice versa. In other words, it states that inflection point is the point in which the rate of slope changes in increasing to decreasing order or vice versa. These points are generally not local maxima or minima but stationary points. Concavity Function.Concavity introduction. Google Classroom. About. Transcript. Sal introduces the concept of concavity, what it means for a graph to be "concave up" or "concave down," and how this relates to the second derivative of a function. Created …Similarly, a function is concave down if its graph opens downward (Figure \(\PageIndex{1b}\)). Figure \(\PageIndex{1}\) This figure shows the concavity of a function at several points. Notice that a function can be concave up regardless of whether it is increasing or decreasing.Step 1. For the graph shown, identify a) the point (s) of inflection and b) the intervals where the function is concave up or concave down. 5 X HE -10 -5 5 10 12 -10- a) The point (s) of inflection is/are (Type an ordered pair. Use a comma to separate answers as needed.) ce b) Identify the intervals where the function is concave up or concave ...ection point at x= 1, and is concave down on (1;1). 4. Sketch the graph of a continuous function, y= f(x), which is decreasing on (1 ;1), has a relative minimum at x= 1, and does not have any in ection points. or 5. Sketch the graph of a continuous function y= f(x) which satis es all of the following conditions: Domain of f(x) is (1 ;1)Pulmonary function tests are a group of tests that measure breathing and how well the lungs are functioning. Pulmonary function tests are a group of tests that measure breathing an...Dec 21, 2020 · Figure \(\PageIndex{1}\): A function \(f\) with a concave up graph. Notice how the slopes of the tangent lines, when looking from left to right, are increasing. If a function is decreasing and concave up, then its rate of decrease is slowing; it is "leveling off." If the function is increasing and concave up, then the rate of increase is ... (Enter your answers as comma-separated lists.) locations of local minima x = locations of local maxima x = (c) Determine intervals where f is concave up or concave down. (Enter your answers using interval notation.) concave up concave down (d) Determine the locations of inflection points of f. Sketch the curve, then use a calculator to compare ... Concave Up, Concave Down, Points of Inflection. We have seen previously that the sign of the derivative provides us with information about where a function (and its graph) is increasing, decreasing or stationary. We now look at the "direction of bending" of a graph, i.e. whether the graph is "concave up" or "concave down". Note that the value a is directly related to the second derivative, since f ''(x) = 2a.. Definition. Let f(x) be a differentiable function on an interval I. (i) We will say that the graph of f(x) is concave up on I iff f '(x) is increasing on I. (ii) We will say that the graph of f(x) is concave down on I iff f '(x) is decreasing on I. Some authors use concave for concave down and convex for ...Consequently, to determine the intervals where a function \(f\) is concave up and concave down, we look for those values of \(x\) where \(f''(x)=0\) or \(f''(x)\) is undefined. When we have determined these points, we divide the domain of \(f\) into smaller intervals and determine the sign of \(f''\) over each of these smaller intervals. If \(f ...1. Suppose you pour water into a cylinder of such cross section, ConcaveUp trickles water down the trough and holds water in the tub. ConcaveDown trickles water away and spills out, water falling down. In the first case slope is <0 to start with, increases to 0 and next becomes > 0. In the second case slope is >0 at start, decreases to 0 and ...Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more. Concavity. Save Copy. Log InorSign Up. f x = 1 1 + x 2 1. g(x)=f'(x) 2. g x = d dx f ... Free functions calculator - explore function domain, range, intercepts, extreme points and asymptotes step-by-step of a function can tell you whether the linear approximation will be an overestimate or an underestimate. 1.If f(x) is concave up in some interval around x= c, then L(x) underestimates in this interval. 2.If f(x) is concave down in some interval around x= c, then L(x) overestimates in this interval.Hence, what makes \(f\) concave down on the interval is the fact that its derivative, \(f'\), is decreasing. Figure 1.31: At left, a function that is concave up; at right, one that is concave down. We state these most recent observations formally as the definitions of the terms concave up and concave down.(W) Consider the function f (x) = a x 3 + b x where a > 0. (a) Consider b > 0. (i) Find the x-intercepts.(ii) Find the intervals on which f is increasing and decreasing. (iii) Identify any local extrema. (iv) Find the intervals on which f is concave up and concave down. (b) Consider b < 0. (i) Find the x-intercepts.(ii) Find the intervals on which f is increasing and decreasing.Using the second derivative test, f(x) is concave up when x<-1/2 and concave down when x> -1/2. Concavity has to do with the second derivative of a function. A function is concave up for the intervals where d^2/dx^2f(x)>0. A function is concave down for the intervals where d^2/dx^2f(x)<0. First, let's solve for the second derivative of the function.Concavity of Quadratic Functions. The concavity of functions may be determined using the sign of the second derivative. For a quadratic function f is of the form f (x) = a x 2 + b x + c , with a not equal to 0 The first and second derivatives of are given by f ' (x) = 2 a x + b f " (x) = 2 a The sign of f " depends on the sign of coefficient a ...Something that goes from standing still to moving must be speeding up, so just to the right of each of t = 1 t = 1 and t = 3 t = 3 should count as speeding up. Conversely, just to the left of each of t = 1 t = 1 and t = 3 t = 3 the particle is moving, but it is going to stand still in a little while. That means that it must be slowing down at ...Solution. We see that the function is not constant on any interval. The function is increasing where it slants upward as we move to the right and decreasing where it slants downward as we move to the right. The function appears to be increasing from \displaystyle t=1 t = 1 to \displaystyle t=3 t = 3 and from \displaystyle t=4 t = 4 on.Here's the best way to solve it. Sketch the graph of the following function. Indicate where the function is increasing or decreasing where any relative extrema occur, where asymptotes occur, where the graph is concave up or concave down, where any points of inflection occur, and where any intercepts occur. X2-8 f (x)=*-3 O A.Concave lenses are used for correcting myopia or short-sightedness. Convex lenses are used for focusing light rays to make items appear larger and clearer, such as with magnifying ...Here’s the best way to solve it. 1. You are given a function f (x) whose domain is all real numbers. Describe in a short paragraph how you could sketch the graph without a calculator. Include how to find intervals where f is increasing or decreasing, how to find intervals where f is concave up or down, and how to find local extrema and points ...Answer to . Find the intervals on which the function is concave up or down,...Just because it's concave-up to the left & right of 0 doesn't mean it's concave up at 0. Unlike y=x^2 and despite appearances on a graphing calc, y=x^4 is truly "flat" (neither conc-up nor -down) at 0. f''(x)=0 for all x for a line, which is not a failure but is the correct answer: flat at all points.0:00 find the interval that f is increasing or decreasing4:56 find the local minimum and local maximum of f7:37 concavities and points of inflectioncalculus ...If a function is bent upwards, it's referred to as concave up. Conversely, if it bends downward, it's concave down. The point of inflection is where this change in bending direction takes place. Understanding the concavity function is pivotal, especially when we're on the lookout for inflection points. How to Find Concavity?Example 5.4.1. Describe the concavity of f(x) = x3 − x. Solution. The first dervative is f ′ (x) = 3x2 − 1 and the second is f ″ (x) = 6x. Since f ″ (0) = 0, there is potentially an inflection point at zero. Since f ″ (x) > 0 when x > 0 and f ″ (x) < 0 when x < 0 the concavity does change from down to up at zero, and the curve is ...A point where the direction of concavity changes is called an "inflection 1 point.". Figure 8. Definition 2. We say ( x 0, f ( x 0)) is an inflection point of the graph of f or simply f has an inflection point at x 0 if: (a) The graph of f has a tangent line at ( x 0, f ( x 0)), and. (b) The direction of concavity of f changes (from upward ...There has been a lot of recent attention focused on the importance of executive function for successful learning. Many researchers and educators believe that this group of skills, ...For the following function determine: a. intervals where f f f is increasing or decreasing b. local minima and maxima of f f f c. intervals where f f f is concave up and concave down, and d. the inflection points of f f f. f (x) = x 4 − 6 x 3 f(x)=x^{4}-6 x^{3} f (x) = x 4 − 6 x 3Recall that the first derivative of the curve C can be calculated by dy dx = dy/dt dx/dt. If we take the second derivative of C, then we can now calculate intervals where C is concave up or concave down. (1) d2y dx2 = d dx(dy dx) = d dt(dy dx) dx dt. Now let's look at some examples of calculating the second derivative of parametric curves.Consider the following. (If an answer does not exist, enter DNE.) f (x) = 3 sin (x) + 3 cos (x), 0 ≤ x ≤ 2𝜋 Find the inflection points. (Order your answers from smallest to largest x, then from smallest to largest y.) (x, y) = (x, y) = Find the interval on which f is concave up. (Enter your answer using interval notation.) Find the.Key Concepts. Concavity describes the shape of the curve. If the average rates are increasing on an interval then the function is concave up and if the average rates are decreasing on an interval then the function is …The state or quality of being concave. Concave up: Concave down: If a function is concave up (like a parabola), what is 𝑓 ñ is doing. If 𝑓 is concave up, then 𝑓 ñ is increasing. If 𝑓 is concave down, then 𝑓 ñ is decreasing. This leads us to the following… 𝑓 ñ ñ P0 means 𝑓 is concave up. 𝑓 ñ ñ O0 means 𝑓 is ...Concave up on (√3, ∞) since f′′ (x) is positive. The graph is concave down when the second derivative is negative and concave up when the second derivative is positive. Concave down on ( - ∞, - √3) since f′′ (x) is negative. Concave up on ( - √3, 0) since f′′ (x) is positive.When it comes to performing calculations on your Windows device, having a reliable and user-friendly calculator app is essential. While the default calculator that comes with Windo...The function would be positive, but the function would be decreasing until it hits its vertex or minimum point if the parabola is upward facing. If the function is decreasing, it has a negative rate of growth. In other words, while the function is decreasing, its slope would be negative. You could name an interval where the function is positive ...Determine the intervals where the graph of the function f(x)=x+1/x is concave up and concave down and inflection point? Calculus. 1 Answer marfre Apr 10, 2018 concave up: #(0, oo)#; concave down: #(-oo, 0)# no inflection point. Explanation: Given: #f(x) = x + 1/x = (x^2 + 1)/x# There is a vertical ... How do you calculate the ideal gas law ...Determine the intervals on which the function is concave up or down and find the points of inflection. 𝑦=13𝑥2+ln(𝑥)(𝑥>0)y=13x2+ln⁡(x)(x>0)Calculus questions and answers. Determine the intervals on which the function is concave up and intervals on which the function is concave down. Before you submit your solutions, check your answers by graphing the corresponding functions. No need to include these graphs. f (X) = x3. f (x) = xe-x. f (x) = X - 2 sin X defined on the interval (0 ...... concave up" or "concave down," and how this relates to the second derivative of a function. Created by Sal Khan. Questions Tips & Thanks. Want to join the&nb...Inflection Points. Added Aug 12, 2011 by ccruz19 in Mathematics. Determines the inflection points of a given equation. Send feedback | Visit Wolfram|Alpha. Get the free "Inflection Points" widget for your website, blog, Wordpress, Blogger, or iGoogle.minimum in the calculate menu since the parabola is concave up. If it were concave down, you would need to key in "4" (maximum) in the calculate menu. If you have a TI-86, use the following key strokes: Note 1: The direction of the first arrow (right) in the instructions above assumes your cursor is to the leftDetermine the intervals on which the function is concave up or concave down. (Enter your answers using interval notation. Enter EMPTY or o for the empty set.) f (x) = (x - 8) (6 - x) concave up x concave down X Find the points of inflection. (Enter your answers as a comma-separated list.The first and the second derivative of a function can be used to obtain a lot of information about the behavior of that function. For example, the first derivative tells us where a function increases or decreases and where it has maximum or minimum points; the second derivative tells us where a function is concave up or down and where it has inflection points.Concave up (also called convex) or concave down are descriptions for a graph, or part of a graph: A concave up graph looks roughly like the letter U. A concave down graph is shaped like an upside down U (“⋒”). They tell us something about the shape of a graph, or more specifically, how it bends. That kind of information is useful when it ...Apr 22, 2023 ... Let F of X be the function defined above. On what intervals is F concave up? Justify. In order to determine concavity, we need the second ...What x values is the function concave down if #f(x) = 15x^(2/3) + 5x#? ... On what intervals the following equation is concave up, concave down and where it's inflection... See all questions in Analyzing Concavity of a Function Impact of this question. 7581 views around the world ...The major difference between concave and convex lenses lies in the fact that concave lenses are thicker at the edges and convex lenses are thicker in the middle. These distinctions...b) Find all inflection points of f defined above, and determine where the function is concave up and where ; For the function f(x)=2x^{3}-3x^{2}-12x+3, find the critical points and identify them as local minimums or local maximums. Also find the inflection points, and identify the intervals of concavity. WitFind the inflection points and intervals of concavity up and down of. f(x) = 3x2 − 9x + 6 f ( x) = 3 x 2 − 9 x + 6. First, the second derivative is just f′′(x) = 6 f ″ ( x) = 6. Solution: Since this is never zero, there are not points of inflection. And the value of f′′ f ″ is always 6 6, so is always > 0 > 0 , so the curve is ...In today’s fast-paced world, efficiency is key. Whether you are a student, professional, or small business owner, finding ways to streamline your tasks can greatly improve producti...42. A function f: R → R is convex (or "concave up") provided that for all x, y ∈ R and t ∈ [0, 1] , f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y). Equivalently, a line segment between two points on the graph lies above the graph, the region above the graph is convex, etc. I want to know why the word "convex" goes with the inequality in ...The calculator will try to find the domain, range, x-intercepts, y-intercepts, derivative, integral, asymptotes, intervals of increase and decrease, critical (stationary) points, …Explore math with our beautiful, free online graphing calculator. Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more. Concavity finder. Save Copy. Log InorSign Up. Type the function below after the f(x) = . Then simply click the red line and where it intersects to find the point of concavity.A point where a function changes from concave up to concave down or vice versa is called an inflection point. Example 1: Describe the Concavity. An object is ...Function f is graphed. The x-axis is unnumbered. The graph consists of a curve. The curve starts in quadrant 2, moves downward concave up to a minimum point in quadrant 1, moves upward concave up and then concave down to a maximum point in quadrant 1, moves downward concave down and ends in quadrant 4.The interval on the right of the inflection point is 9/4 and on the function is concave up at (9/4, ∞). In the given question we have to determine the intervals on which the given function is concave up or down and find the point of inflection. The given function is: f(x) = x(x−4√x) Firstly finding the first and second derivatives.Similarly, a function is concave down if its graph opens downward (Figure \(\PageIndex{1b}\)). Figure \(\PageIndex{1}\) This figure shows the concavity of a function at several points. Notice that a function can be concave up regardless of whether it is increasing or decreasing. Possible Answers: Correct answer: Explanation: The intervals where a function is concave up or down is found by taking second derivative of the function. Use the power rule which states: Now, set equal to to find the point (s) of infleciton. In this case, . To find the concave up region, find where is positive. Inflection points are found in a way similar to how we find extremum points. However, instead of looking for points where the derivative changes its sign, we are looking for points where the second derivative changes its sign. Let's find, for example, the inflection points of f ( x) = 1 2 x 4 + x 3 − 6 x 2 . The second derivative of f is f ...Derivatives can help! The derivative of a function gives the slope. When the slope continually increases, the function is concave upward. When the slope continually decreases, the function is concave downward. Taking the second derivative actually tells us if the slope continually increases or decreases. When the second derivative is positive ...In today’s digital age, where technology seems to be advancing at lightning speed, it’s easy to overlook the importance of basic tools that have stood the test of time. One such to...

Increasing, concave. Correct answer: Decreasing, convex. Explanation: First, let's find out if the graph is increasing or decreasing. For that, we need the first derivative. To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.. Edassist atrium

function concave up and down calculator

Question: 4 Consider the function f(x)=ax3+bx where a>0. (a) Consider b>0. i. Find the x-intercepts. ii. Find the intervals on which f is increasing and decreasing. iii. Identify any local extrema. iv. Find the intervals on which f is concave up and concave down. (b) Consider b<0. i. Find the x-intercepts. ii. Find the intervals on which f is ...Nov 10, 2020 · David Guichard (Whitman College) Integrated by Justin Marshall. 4.4: Concavity and Curve Sketching is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. We know that the sign of the derivative tells us whether a function is increasing or decreasing; for example, when f′ (x)>0, f (x) is increasing. Function f is graphed. The x-axis is unnumbered. The graph consists of a curve. The curve starts in quadrant 2, moves downward concave up to a minimum point in quadrant 1, moves upward concave up and then concave down to a maximum point in quadrant 1, moves downward concave down and ends in quadrant 4. The major difference between concave and convex lenses lies in the fact that concave lenses are thicker at the edges and convex lenses are thicker in the middle. These distinctions...Given a curve y=f(x), a point of inflection is a point at which the second derivative equals to zero, f''(x)=0, and across which the second derivative changes sign. This means that the curve changes concavity across a point of inflection; either from concave-up to concave-down or concave-down to concave-up. In this section we learn how to find points of …Determine whether the function is concave up and concave down. Find the intervals on which f(x) = x^3 + 1 is concave up. Given the function f(x) = x(x-4)^3 , find the intervals where the function is concave up or down. For the function f(x) = 12x^5 + 45x^4 - 360x^3 + 4 , find the intervals where the function is concave up or down.This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: Determine the intervals on which the given function is concave up or down and find the points of inflection. Letf (x)= (x^2-6)e^xInflection Point (s) = ____The left-most interval is ___ and on this interval f ...The state or quality of being concave. Concave up: Concave down: If a function is concave up (like a parabola), what is 𝑓 ñ is doing. If 𝑓 is concave up, then 𝑓 ñ is increasing. If 𝑓 is concave down, then 𝑓 ñ is decreasing. This leads us to the following… 𝑓 ñ ñ P0 means 𝑓 is concave up. 𝑓 ñ ñ O0 means 𝑓 is ...Free Pre-Algebra, Algebra, Trigonometry, Calculus, Geometry, Statistics and Chemistry calculators step-by-stepAn inflection point is a point on a function where the curvature of the function changes sign. ... Use Wolfram|Alpha to explore how the concavity of functions ...You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: Step 1 of 2: Determine the intervals on which the function is concave upward and concave downward. Step 2 of 2: Determine the x-coordinates of any inflection point (s) in the graph. Here's the best way to solve it. 1.Concavity relates to the rate of change of a function's derivative. A function f is concave up (or upwards) where the derivative f ′ is increasing. This is equivalent to the derivative of f ′ , which is f ″ , being positive. Similarly, f is concave down (or downwards) where the derivative f ′ is decreasing (or equivalently, f ″ is ...Free Functions Concavity Calculator - find function concavity intervlas step-by-step ... A function basically relates an input to an output, there’s an input, a ...Explain whether a concave-down function has to cross [latex]y=0[/latex] for some value of [latex]x[/latex]. ... is concave up and concave down, and; the inflection points of [latex]f[/latex]. Sketch the curve, then use a calculator to compare your answer. If you cannot determine the exact answer analytically, use a calculator.This video defines concavity using the simple idea of cave up and cave down, and then moves towards the definition using tangents. You can find part 2 here, ...Study the graphs below to visualize examples of concave up vs concave down intervals. It's important to keep in mind that concavity is separate from the notion of increasing/decreasing/constant intervals. A concave up interval can contain both increasing and/or decreasing intervals. A concave downward interval can contain both increasing and ....

Popular Topics